Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone.
نویسندگان
چکیده
Interstitial branching is an important mechanism for target innervation in the developing CNS. A previous study of cortical neurons in vitro showed that the terminal growth cone pauses and enlarges in regions from which interstitial axon branches later develop (Szebenyi et al., 1998). In the present study, we investigated how target-derived signals affect the morphology and behaviors of growth cones leading to development of axon branches. We used bath and local application of a target-derived growth factor, FGF-2, on embryonic pyramidal neurons from the sensorimotor cortex and used time-lapse digital imaging to monitor effects of FGF-2 on axon branching. Observations of developing neurons over periods of several days showed that bath-applied FGF-2 significantly increased growth cone size and slowed growth cone advance, leading to a threefold increase in axon branching. FGF-2 also had acute effects on growth cone morphology, promoting rapid growth of filopodia within minutes. Application of FGF-2-coated beads promoted local axon branching in close proximity to the beads. Branching was more likely to occur when the FGF-2 bead was on or near the growth cone, suggesting that distal regions of the axon are more responsive to FGF-2 than other regions of the axon shaft. Together, these results show that interstitial axon branches can be induced locally through the action of a target-derived growth factor that preferentially exerts effects on the growth cone. We suggest that, in target regions, growth factors such as FGF-2 and other branching factors may induce formation of collateral axon branches by enhancing the pausing and enlargement of primary growth cones that determine future branch points.
منابع مشابه
Common mechanisms underlying growth cone guidance and axon branching.
During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their co...
متن کاملNetrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.
In many CNS pathways, target innervation occurs by axon branching rather than extension of the primary growth cone into targets. To investigate mechanisms of branch formation, we studied the effects of attractive and inhibitory guidance cues on cortical axon branching. We found that netrin-1, which attracts cortical axons, and FGF-2 increased branching by >50%, whereas semaphorin 3A (Sema3A), w...
متن کاملO-20: The Combination of Basic Fibroblast Growth Factor and Follicular Stimulating Hormone Promotes Human Follicle Development In Vitro Culture
Background Fertility preservation is an important part of scientific study in the field of reproductive medicine. Ovarian cryopreservation and in vitro follicles culture provide option for fertility conservation in older women or cancer patients. Basic fibroblast growth factor (bFGF) or FGF-2, is member of fibroblast growth factors family which play critical roles in cell migration proliferatio...
متن کاملInterstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors.
Interstitial branches arise from the axon shaft, sometimes at great distances behind the primary growth cone. After a waiting period that can last for days after extension of the primary growth cone past the target, branches elongate toward their targets. Delayed interstitial branching is an important but little understood mechanism for target innervation in the developing CNS of vertebrates. O...
متن کاملP-52: Brain-Derived Neurotrophic Factor Promotes The Development of Human Ovarian Early Follicles during Growth In Vitro
Background Cryopreservation of ovarian cortex is increasingly used to preserve fertility before cancer therapy. Recently, studies show that Brain-derived neurotrophic factor (BDNF) may be involved in oocyte maturation. Brain-derived neurotrophic factor (BDNF) is member of neurotrophin family that has anti-apoptotic effects on nervous system. Recent researches show that it also plays key role in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2001